This transfer is possible in two ways: direct transfer and using the decimal system.
first, let\'s make a direct transfer.
Fill in the number with missing zeros on the right
let\'s make a direct translation from binary to postbinary like this:
110001101.110010011100_{2} = 110 001 101. 110 010 011 100 = 110_{(=6)} 001_{(=1)} 101_{(=5)}. 110_{(=6)} 010_{(=2)} 011_{(=3)} 100_{(=4)} = 615.6234_{8}
the Final answer: 110001101.1100100111_{2} = 615.6234_{8}
now let\'s make the transfer using the decimal system.
let\'s translate to decimal like this:
1∙2^{8}+1∙2^{7}+0∙2^{6}+0∙2^{5}+0∙2^{4}+1∙2^{3}+1∙2^{2}+0∙2^{1}+1∙2^{0}+1∙2^{1}+1∙2^{2}+0∙2^{3}+0∙2^{4}+1∙2^{5}+0∙2^{6}+0∙2^{7}+1∙2^{8}+1∙2^{9}+1∙2^{10}+0∙2^{11}+0∙2^{12} = 1∙256+1∙128+0∙64+0∙32+0∙16+1∙8+1∙4+0∙2+1∙1+1∙0.5+1∙0.25+0∙0.125+0∙0.0625+1∙0.03125+0∙0.015625+0∙0.0078125+1∙0.00390625+1∙0.001953125+1∙0.0009765625+0∙0.00048828125+0∙0.000244140625 = 256+128+0+0+0+8+4+0+1+0.5+0.25+0+0+0.03125+0+0+0.00390625+0.001953125+0.0009765625+0+0 = 397.7880859375_{10}
got It: 110001101.110010011100_{2} =397.7880859375_{10}
Translate the number 397.7880859375_{10} в octal like this:
the Integer part of the number is divided by the base of the new number system:
397  8   
392  49  8  
5  48  6  
 1   

the Fractional part of the number is multiplied by the base of the new number system:

0.  7880859375*8 
6  .30469*8 
2  .4375*8 
3  .5*8 
4  .0*8 
the result of the conversion was:
397.7880859375_{10} = 615.6234_{8}
the Final answer: 110001101.1100100111_{2} = 615.6234_{8}