This transfer is possible in two ways: direct transfer and using the decimal system.
first, let\'s make a direct transfer.
let\'s do a direct translation from hexadecimal to binary like this:
1FB.F216 = 1 F B. F 2 = 1(=0001) F(=1111) B(=1011). F(=1111) 2(=0010) = 111111011.11110012
the Final answer: 1FB.F216 = 111111011.11110012
now let\'s make the transfer using the decimal system.
let\'s translate to decimal like this:
1∙162+15∙161+11∙160+15∙16-1+2∙16-2 = 1∙256+15∙16+11∙1+15∙0.0625+2∙0.00390625 = 256+240+11+0.9375+0.0078125 = 507.945312510
got It: 1FB.F216 =507.945312510
Translate the number 507.945312510 в binary like this:
the Integer part of the number is divided by the base of the new number system:
507 | 2 | | | | | | | | |
-506 | 253 | 2 | | | | | | | |
1 | -252 | 126 | 2 | | | | | | |
| 1 | -126 | 63 | 2 | | | | | |
| | 0 | -62 | 31 | 2 | | | | |
| | | 1 | -30 | 15 | 2 | | | |
| | | | 1 | -14 | 7 | 2 | | |
| | | | | 1 | -6 | 3 | 2 | |
| | | | | | 1 | -2 | 1 | |
| | | | | | | 1 | | |
 |
the Fractional part of the number is multiplied by the base of the new number system:
 |
0. | 9453125*2 |
1 | .89063*2 |
1 | .78125*2 |
1 | .5625*2 |
1 | .125*2 |
0 | .25*2 |
0 | .5*2 |
1 | .0*2 |
the result of the conversion was:
507.945312510 = 111111011.11110012
the Final answer: 1FB.F216 = 111111011.11110012