This transfer is possible in two ways: direct transfer and using the decimal system.
first, let\'s make a direct transfer.
let\'s do a direct translation from hexadecimal to binary like this:
B2D4.2A16 = B 2 D 4. 2 A = B(=1011) 2(=0010) D(=1101) 4(=0100). 2(=0010) A(=1010) = 1011001011010100.00101012
the Final answer: B2D4.2A16 = 1011001011010100.00101012
now let\'s make the transfer using the decimal system.
let\'s translate to decimal like this:
11∙163+2∙162+13∙161+4∙160+2∙16-1+10∙16-2 = 11∙4096+2∙256+13∙16+4∙1+2∙0.0625+10∙0.00390625 = 45056+512+208+4+0.125+0.0390625 = 45780.164062510
got It: B2D4.2A16 =45780.164062510
Translate the number 45780.164062510 в binary like this:
the Integer part of the number is divided by the base of the new number system:
45780 | 2 | | | | | | | | | | | | | | | |
-45780 | 22890 | 2 | | | | | | | | | | | | | | |
0 | -22890 | 11445 | 2 | | | | | | | | | | | | | |
| 0 | -11444 | 5722 | 2 | | | | | | | | | | | | |
| | 1 | -5722 | 2861 | 2 | | | | | | | | | | | |
| | | 0 | -2860 | 1430 | 2 | | | | | | | | | | |
| | | | 1 | -1430 | 715 | 2 | | | | | | | | | |
| | | | | 0 | -714 | 357 | 2 | | | | | | | | |
| | | | | | 1 | -356 | 178 | 2 | | | | | | | |
| | | | | | | 1 | -178 | 89 | 2 | | | | | | |
| | | | | | | | 0 | -88 | 44 | 2 | | | | | |
| | | | | | | | | 1 | -44 | 22 | 2 | | | | |
| | | | | | | | | | 0 | -22 | 11 | 2 | | | |
| | | | | | | | | | | 0 | -10 | 5 | 2 | | |
| | | | | | | | | | | | 1 | -4 | 2 | 2 | |
| | | | | | | | | | | | | 1 | -2 | 1 | |
| | | | | | | | | | | | | | 0 | | |
|
the Fractional part of the number is multiplied by the base of the new number system:
|
0. | 1640625*2 |
0 | .32813*2 |
0 | .65625*2 |
1 | .3125*2 |
0 | .625*2 |
1 | .25*2 |
0 | .5*2 |
1 | .0*2 |
the result of the conversion was:
45780.164062510 = 1011001011010100.00101012
the Final answer: B2D4.2A16 = 1011001011010100.00101012