This transfer is possible in two ways: direct transfer and using the decimal system.
first, let\'s make a direct transfer.
let\'s do a direct translation from hexadecimal to binary like this:
725.87616 = 7 2 5. 8 7 6 = 7(=0111) 2(=0010) 5(=0101). 8(=1000) 7(=0111) 6(=0110) = 11100100101.100001110112
the Final answer: 725.87616 = 11100100101.100001110112
now let\'s make the transfer using the decimal system.
let\'s translate to decimal like this:
7∙162+2∙161+5∙160+8∙16-1+7∙16-2+6∙16-3 = 7∙256+2∙16+5∙1+8∙0.0625+7∙0.00390625+6∙0.000244140625 = 1792+32+5+0.5+0.02734375+0.00146484375 = 1829.5288085937510
got It: 725.87616 =1829.5288085937510
Translate the number 1829.5288085937510 в binary like this:
the Integer part of the number is divided by the base of the new number system:
1829 | 2 | | | | | | | | | | |
-1828 | 914 | 2 | | | | | | | | | |
1 | -914 | 457 | 2 | | | | | | | | |
| 0 | -456 | 228 | 2 | | | | | | | |
| | 1 | -228 | 114 | 2 | | | | | | |
| | | 0 | -114 | 57 | 2 | | | | | |
| | | | 0 | -56 | 28 | 2 | | | | |
| | | | | 1 | -28 | 14 | 2 | | | |
| | | | | | 0 | -14 | 7 | 2 | | |
| | | | | | | 0 | -6 | 3 | 2 | |
| | | | | | | | 1 | -2 | 1 | |
| | | | | | | | | 1 | | |
|
the Fractional part of the number is multiplied by the base of the new number system:
|
0. | 52880859375*2 |
1 | .05762*2 |
0 | .11523*2 |
0 | .23047*2 |
0 | .46094*2 |
0 | .92188*2 |
1 | .84375*2 |
1 | .6875*2 |
1 | .375*2 |
0 | .75*2 |
1 | .5*2 |
the result of the conversion was:
1829.5288085937510 = 11100100101.10000111012
the Final answer: 725.87616 = 11100100101.10000111012