This transfer is possible in two ways: direct transfer and using the decimal system.
first, let\'s make a direct transfer.
Fill in the number with missing zeros on the left
let\'s make a direct translation from binary to post-binary like this:
010100111001.1102 = 010 100 111 001. 110 = 010(=2) 100(=4) 111(=7) 001(=1). 110(=6) = 2471.68
the Final answer: 10100111001.1102 = 2471.68
now let\'s make the transfer using the decimal system.
let\'s translate to decimal like this:
0∙211+1∙210+0∙29+1∙28+0∙27+0∙26+1∙25+1∙24+1∙23+0∙22+0∙21+1∙20+1∙2-1+1∙2-2+0∙2-3 = 0∙2048+1∙1024+0∙512+1∙256+0∙128+0∙64+1∙32+1∙16+1∙8+0∙4+0∙2+1∙1+1∙0.5+1∙0.25+0∙0.125 = 0+1024+0+256+0+0+32+16+8+0+0+1+0.5+0.25+0 = 1337.7510
got It: 010100111001.1102 =1337.7510
Translate the number 1337.7510 в octal like this:
the Integer part of the number is divided by the base of the new number system:
1337 | 8 | | | |
-1336 | 167 | 8 | | |
1 | -160 | 20 | 8 | |
| 7 | -16 | 2 | |
| | 4 | | |
|
the Fractional part of the number is multiplied by the base of the new number system:
|
0. | 75*8 |
6 | .0*8 |
the result of the conversion was:
1337.7510 = 2471.68
the Final answer: 10100111001.1102 = 2471.68