This transfer is possible in two ways: direct transfer and using the decimal system.
first, let\'s make a direct transfer.
let\'s do a direct translation from octal to binary like this:
64738 = 6 4 7 3 = 6(=110) 4(=100) 7(=111) 3(=011) = 1101001110112
the Final answer: 64738 = 1101001110112
now let\'s make the transfer using the decimal system.
let\'s translate to decimal like this:
6∙83+4∙82+7∙81+3∙80 = 6∙512+4∙64+7∙8+3∙1 = 3072+256+56+3 = 338710
got It: 64738 =338710
Translate the number 338710 в binary like this:
the Integer part of the number is divided by the base of the new number system:
3387 | 2 | | | | | | | | | | | |
-3386 | 1693 | 2 | | | | | | | | | | |
1 | -1692 | 846 | 2 | | | | | | | | | |
| 1 | -846 | 423 | 2 | | | | | | | | |
| | 0 | -422 | 211 | 2 | | | | | | | |
| | | 1 | -210 | 105 | 2 | | | | | | |
| | | | 1 | -104 | 52 | 2 | | | | | |
| | | | | 1 | -52 | 26 | 2 | | | | |
| | | | | | 0 | -26 | 13 | 2 | | | |
| | | | | | | 0 | -12 | 6 | 2 | | |
| | | | | | | | 1 | -6 | 3 | 2 | |
| | | | | | | | | 0 | -2 | 1 | |
| | | | | | | | | | 1 | | |
 |
the result of the conversion was:
338710 = 1101001110112
the Final answer: 64738 = 1101001110112