This transfer is possible in two ways: direct transfer and using the decimal system.
first, let\'s make a direct transfer.
let\'s do a direct translation from hexadecimal to binary like this:
A3F16 = A 3 F = A(=1010) 3(=0011) F(=1111) = 1010001111112
the Final answer: A3F16 = 1010001111112
now let\'s make the transfer using the decimal system.
let\'s translate to decimal like this:
10∙162+3∙161+15∙160 = 10∙256+3∙16+15∙1 = 2560+48+15 = 262310
got It: A3F16 =262310
Translate the number 262310 в binary like this:
the Integer part of the number is divided by the base of the new number system:
2623 | 2 | | | | | | | | | | | |
-2622 | 1311 | 2 | | | | | | | | | | |
1 | -1310 | 655 | 2 | | | | | | | | | |
| 1 | -654 | 327 | 2 | | | | | | | | |
| | 1 | -326 | 163 | 2 | | | | | | | |
| | | 1 | -162 | 81 | 2 | | | | | | |
| | | | 1 | -80 | 40 | 2 | | | | | |
| | | | | 1 | -40 | 20 | 2 | | | | |
| | | | | | 0 | -20 | 10 | 2 | | | |
| | | | | | | 0 | -10 | 5 | 2 | | |
| | | | | | | | 0 | -4 | 2 | 2 | |
| | | | | | | | | 1 | -2 | 1 | |
| | | | | | | | | | 0 | | |
 |
the result of the conversion was:
262310 = 1010001111112
the Final answer: A3F16 = 1010001111112