This transfer is possible in two ways: direct transfer and using the decimal system.
first, let\'s make a direct transfer.
let\'s translate to decimal like this:
2∙83+5∙82+6∙81+7∙80+5∙8-1+2∙8-2+3∙8-3 = 2∙512+5∙64+6∙8+7∙1+5∙0.125+2∙0.015625+3∙0.001953125 = 1024+320+48+7+0.625+0.03125+0.005859375 = 1399.66210937510
got It: 2567.5238 =1399.66210937510
Translate the number 1399.66210937510 в hexadecimal like this:
the Integer part of the number is divided by the base of the new number system:
1399 | 16 | | |
-1392 | 87 | 16 | |
7 | -80 | 5 | |
| 7 | | |
|
the Fractional part of the number is multiplied by the base of the new number system:
|
0. | 662109375*16 |
A | .59375*16 |
9 | .5*16 |
8 | .0*16 |
the result of the conversion was:
1399.66210937510 = 577.A9816
the Final answer: 2567.5238 = 577.A9816
now let\'s make the transfer using the decimal system.
let\'s do a direct translation from octal to binary like this:
2567.5238 = 2 5 6 7. 5 2 3 = 2(=010) 5(=101) 6(=110) 7(=111). 5(=101) 2(=010) 3(=011) = 010101110111.1010100112
the Final answer: 2567.5238 = 10101110111.1010100112
Fill in the number with missing zeros on the left
Fill in the number with missing zeros on the right
let\'s do a direct translation from binary to hexadecimal like this:
010101110111.1010100110002 = 0101 0111 0111. 1010 1001 1000 = 0101(=5) 0111(=7) 0111(=7). 1010(=A) 1001(=9) 1000(=8) = 577.A9816
the Final answer: 010101110111.1010100110008 = 577.A9816