This transfer is possible in two ways: direct transfer and using the decimal system.
first, let\'s make a direct transfer.
let\'s make a direct translation from binary to post-binary like this:
1111001110100111011000102 = 111 100 111 010 011 101 100 010 = 111(=7) 100(=4) 111(=7) 010(=2) 011(=3) 101(=5) 100(=4) 010(=2) = 747235428
the Final answer: 1111001110100111011000102 = 747235428
now let\'s make the transfer using the decimal system.
let\'s translate to decimal like this:
1∙223+1∙222+1∙221+1∙220+0∙219+0∙218+1∙217+1∙216+1∙215+0∙214+1∙213+0∙212+0∙211+1∙210+1∙29+1∙28+0∙27+1∙26+1∙25+0∙24+0∙23+0∙22+1∙21+0∙20 = 1∙8388608+1∙4194304+1∙2097152+1∙1048576+0∙524288+0∙262144+1∙131072+1∙65536+1∙32768+0∙16384+1∙8192+0∙4096+0∙2048+1∙1024+1∙512+1∙256+0∙128+1∙64+1∙32+0∙16+0∙8+0∙4+1∙2+0∙1 = 8388608+4194304+2097152+1048576+0+0+131072+65536+32768+0+8192+0+0+1024+512+256+0+64+32+0+0+0+2+0 = 1596809810
got It: 1111001110100111011000102 =1596809810
Translate the number 1596809810 в octal like this:
the Integer part of the number is divided by the base of the new number system:
15968098 | 8 | | | | | | | |
-15968096 | 1996012 | 8 | | | | | | |
2 | -1996008 | 249501 | 8 | | | | | |
| 4 | -249496 | 31187 | 8 | | | | |
| | 5 | -31184 | 3898 | 8 | | | |
| | | 3 | -3896 | 487 | 8 | | |
| | | | 2 | -480 | 60 | 8 | |
| | | | | 7 | -56 | 7 | |
| | | | | | 4 | | |
 |
the result of the conversion was:
1596809810 = 747235428
the Final answer: 1111001110100111011000102 = 747235428