This transfer is possible in two ways: direct transfer and using the decimal system.
first, let\'s make a direct transfer.
Fill in the number with missing zeros on the left
let\'s make a direct translation from binary to post-binary like this:
0111100111010011101102 = 011 110 011 101 001 110 110 = 011(=3) 110(=6) 011(=3) 101(=5) 001(=1) 110(=6) 110(=6) = 36351668
the Final answer: 111100111010011101102 = 36351668
now let\'s make the transfer using the decimal system.
let\'s translate to decimal like this:
0∙220+1∙219+1∙218+1∙217+1∙216+0∙215+0∙214+1∙213+1∙212+1∙211+0∙210+1∙29+0∙28+0∙27+1∙26+1∙25+1∙24+0∙23+1∙22+1∙21+0∙20 = 0∙1048576+1∙524288+1∙262144+1∙131072+1∙65536+0∙32768+0∙16384+1∙8192+1∙4096+1∙2048+0∙1024+1∙512+0∙256+0∙128+1∙64+1∙32+1∙16+0∙8+1∙4+1∙2+0∙1 = 0+524288+262144+131072+65536+0+0+8192+4096+2048+0+512+0+0+64+32+16+0+4+2+0 = 99800610
got It: 0111100111010011101102 =99800610
Translate the number 99800610 в octal like this:
the Integer part of the number is divided by the base of the new number system:
998006 | 8 | | | | | | |
-998000 | 124750 | 8 | | | | | |
6 | -124744 | 15593 | 8 | | | | |
| 6 | -15592 | 1949 | 8 | | | |
| | 1 | -1944 | 243 | 8 | | |
| | | 5 | -240 | 30 | 8 | |
| | | | 3 | -24 | 3 | |
| | | | | 6 | | |
 |
the result of the conversion was:
99800610 = 36351668
the Final answer: 111100111010011101102 = 36351668